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GRAPHICAL SOLUTION OF SOME AUTOMATIC-CONTROL PKT)BLEMS

INVOLVING SM7URNTION EFFECTS W12THAPPLICATION

TO YAW DAMPERS FOR AIRCRAFT

By William H. Phillips

A graphical method is presented for determining the nntion of a
freely oscillating system of one degree of freedom stabilized by a
controlktng device which applies control force in proportion to the
displacement of the system, to its rate of change of displacement, or
both. The controlling member is assumed to have limitations on its
maximum deflection and on its maximum rate of movement. Several
examples are presented to illustrate the method.

From these examples, it is shown that, at sufficiently small
amplitudes, the period and damping of the system correspmd to those
provided by linear operation of the control whereas, at very large
amplitudes, the period snd damping approach those of the uncontrolled
system. At intermediate amplitudes, if the deflection of the control
is limited, a smooth transition between these two conditions of period
and damping takes place whereas, if the rate of control movement is
limited, the damping may be reduced below that of the uncontrolled
system. ti some cases, limiting the rate of control movement may
produce instability over a range of amplitudes.

If the control produces primarily an increase in dsmping, the
control remaim effective in producing damping even at amplitudes
several times that at which saturation effects sre first encountered.
This effect may be useful in reducing the power requirements of yaw
dampers for airplanes.

INTRODUCTION

Autopilots and other automatic control devices are frequently
designed on the basis of linearized theory. In practice, however, the
limits of linear operation of these devices msy be frequently exceeded.
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h some cases, the use of a system designed to exceed its linear mnge
may be advantageous. For example, recent flight tests of devices
intended to improve the damping of the lateral oscollations of
airplanes have shown that large increases in damping me required only
at small amplitudes of oscillation. Fbr this reason, it may be
desirable to reduce the power and force output of the controlling
device by Limiting either its deflection range, its msximum rate of
movement, or both, in order that the device may be made as small and
as Mght as possible. Tn practice, such a control would frequently
be required to operate in the range of amplitudes where these limitations
are reached. Calculation of the effects of the device under these
conditions is therefore of interest.

Tn electrical work, effects resulting from operating beyond the
linear range of a device have been called saturation effects. An
analysis of the motion of a control system when saturation effects
sre involved may frequently be accomplished by conventional methods
but the process is tedious, particularly when a number of initial
conditions are to be investigated. Problems of this type may be
conveniently solved by use of an electric analo”gcomputer (refs. 1
and 2) provided such equipment is available. If an analytical solution
is required, or if an analytical check on the results obtained from an
analog computer is desired, a simple grapmcal Proced~e for solv~g
such problems may be of interest.

A method frequently found convenient by previous investigators
for analyzing nonlinear systems is the use of the phase plane. This
plane, which consists of a plot of the velocity of the system against
its displacement, has been used by 1?.Uorsb (ref. 3) ~d others for
the study of problems involving nonlinear force variations. The same
method has been applied by Herbert K. Weiss (refs. 4 and 5) to a study
of relay servomechanismswhich involve discontinuous force variations.
By a slight modification of the usual phase-plane technique, Irmgard
Fl&ge-Lotz (ref. 6) has obtatied solutions for the motion of an oscil-
latory system such as an aircraft controlled by discontinuous or on-off
controls. In the present report, methods somewhat similar to those used
in reference 6 are applied to the solution of some problems involving
saturation effects.

The following analysis is applied to the case of a freely
oscillating system with one degree of freedom stabilized by a controlling
device which applies control force h proportion to the displacement of
the system, to its rate of change of displacement, or both. me
controlling member is assumed to have limitations on its maximum
deflection and on its maxiraumrate of movement. Graphical solutions
for several problems of this type are presented to illustrate the
method.

o
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SYMEOIS

constants (see eq. (9))

constent,m

differential operator, d/ds

differential operator, d/dsc

moment of inertia in yaw

yawing mment, or ratio
J

N~ NV

maximum rate of rudder mvement

radius (in polar coordinates)

nondimensional measure of time,

change in nondimensional time

in terms of s

3

nondimensional msasure of time for linesr range of operation

of control,
‘$%

time

rectangular coordinates (see eqs. (17) and (18))

rudder angle

angle (in polar coordinates)

change in angle (?

damping ratio of uncontrolled airplane

dsmping ratio for ltiear range of operation of control,

angle of yaw

— . . -—.—z. —.
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$ phase angle, tan-l #

(D damped natural

of time unit

‘c dsmped natural

NACA TN 3034

frequency of uncontrolled airplane in terms

frequency for linesr range of operation of

control in terms of time

% undamped natural frequency
radians/see

%= undsmped natural frequency
I

i

mr
control, ~

l+ NT’

unit Sc, V=7
of uncontrolled airplane,

for LLnear range of operation of

radians/see

N&~
alJ

subscripts:

0

msx

A
actual

initial value or value at start of an interval

maximum value

dot over quantity denotes differentiation with respect to
time.

ANALYSIS

Theoretical development.- An extensive analysis of the motion of
missiles under the 3nfluence of discontinuous automatic controls is
presented in reference 6. This reference employs a modified phase-
plane method and contains a detailed development of the theory involved.
The theoretical backgrcmnd required for the present analysis is very
similsr to that utilized in reference 6. In particular, the methods
of reference 6 could be employed in the region where the control is .5
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either against its stop or mting at its maximum rate. The methods of
reference 6, however, are not convenient for handllng the transition
from the nonlinear to the linear range of operation. Somewhat different
graphical procedures sre employed herein to handle this problem. In
order to derive these methods, a review of the theory starting with the
basic equations of nmtion appears desirable, although some repetition
of the initial development of reference 6 is involved.

In analyses of nonlinear systems by the phase-plane method, the
velocity of the system is ordinarily plotted against its displacement.
The curve traced out by the system during its motion is called a
trajectory in the phase plane. For a single-degree-of-freedom Ilnesr
system with damping perfmming a free oscillation, the trajectory may
be shown to be a spiral converging on the origin. This spiral is not
a true logarithmic spiral but is somewhat distorted. It iS shown in
reference 6, however, that, if the values of velocity and displacement
are plotted on a skewed system of exes, a true logarithmic spiral
results. The use of a logarithmic spiral is very advantageous for
graphical analysis, inasmch as all such spirals for a given value of
the damping ratio are congruent. As a result, only one spiral for a
given value of the damptig ratio needs to be plotted. This spiral nay
then be made to pass through any given point in the plane to fit the
desired initial conditions simply by rotation about the origin. Ih
order to obtain the relations required for the graphical construction
described herein, expressions are required for the displacement and
velocity of the controlled system for variow conditions of the control.
These expressions are now derived.

For purposes of illustration, the equations of motion are set up
for an airplane oscillating in yaw and controlled by the rudder. The
ssme analysis may be applied, however, to any single-degree-of-freedom
system obeying similar equations of motion and laws of control. The
equation of motion is as follows:

In problems of this type, the number of parameters may be reduced
by expressing the oscillatory characteristics in terms of a natural
frequency ~ and a damping ratio ~ which gives the fraction of

critical damping (ref. 7). These quantities for the uncontrolled
system sre defined as follows:

-- .-— —.. - .—.——-———-—- .— —-—
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Also, let N = —. In terms of these parameters, the equation of

NV
motion becomes

; + 2@& + q2* = -Eg~2 (1)

A further teduction in the number of parameters may be obtained
by use of the nondimensional measure of time s = wt. Let
~_d. equation (1) then becomes

ds‘

D2~ + 2~D~ + ~ = -54 (2)

When the system is in its 13nesr range, the rudder angle is
proportional either to the angle of
a combination of these quantities.
in the linesr range of operation is

yaw, to the yawing velocity, or to
The law of centro1 for the rudder
therefore

(3)

When the Emits of linear operation
either constant (against a stop) or

are exceeded, the rudder angle is
changing at a constant rate. The

rudder sngle in this case may be expressed by the equation

5r=qo+Rs (4)

where R represents the constant rate of rudder movement in terms of
the nondimensional time unit s. The solutions of the equation of
motion for these cases are now discussed.

First, the solution for the 13near range of operation is considered.
When equation (3) is substituted into equation (2), the following result
is obtained:

D%+DT(++&c)+++#z’)=o (5)

.,

.—

Make a second change in the time variable,

_
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8.=4=%
and let D= = ~. Equation (5) then changes back to the form of

dsc

equation (2),

(6)

DC2$ + 2~cDc$ + ~ = O (7)

(8)

The quantity {c represents the damping ratio of the controlled

airplane. The natural frequency of the controlled airplane iriradians
per second is obtained from equations (1), (2), and (5) as

Before writing down the solution of equation (7), the solution of
equation (2) is presented for the case in which the rudder is agatist
a stop or moving at a constant rate. Under these conditions, the
right-hand side of the equation is not zero. The solution of
equation (7), the right-hand side of which is zero, is then obtained
from this result as a special case. When the expression for the rudder
angle (eq. (4)) is substituted into equation (2), the solution for the
variation of ~ with s for
and bro is as follows:

specified initial conditions $o~ (W)o,

( )V = -N ~. - 2~R - RNs + e“Cs(A cos u + B sin OS) (9)

where

A=

B=

u=

IQ + ‘(%.
r

——.—————— .— —.
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The value of w may be expressed as a function of s as follows{

[( )1CV+Nbr-2@+RNS
0

(10)

The solution of equation (7), which applies when the control is
operating in its linear range, may be obtained as a simplified case
from expressions (9) and (10), because in this case the form of the
differential equation is the same but the right-hand side of the
equation is zero. The solution of equation (7) is obtained by setting
~ro and R equal to zero and by substituting (c and Dc for ~

and D in equations (9) and (10).

The derivation of the relations required for the graphical
construction, in which the nmtion is represented by a true logarithmic
spiral rather than by a distorted spiral, is now presented. From
equations (2) and (4)

Substituting the value of ~ from equation
yields the relation

-D%J - 2~(D$+ RN) = e-~s(A cos

By rearranging equation (10), the following
.

(9) into equation (11)

ms+Bsinu) (M)

equation is obtained:

1( )JD$+RN+~~+N5ro-2~R +RNs =u#(-Asinos+Bcosw) (13)

In equations (12) and (13), set

A= Csin$

c Cos #

where C = w ad $::an-’:. Equation (12) then becomes

[h I ‘Cs(sin # cos m + cosa-- 24’(DV+ RN) .mCe $Stiuls)

= ~e-~s s~ (~ + @) (14)

.
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Equation (13)
v

9

becomes
1 ,.

L(W+RN+[Vf+N5ro- 2’”)+‘d =uXe-Ls(sin @ sin 02s + cos @ cos w)

= UK,+ Cos (U&3+ @) (15)

The values on the right-hand sides of equations (14) and (15) may be
identified as the rectangular coordinates of a logarithmic spiral
which, in polar coordinates, has the formula

r = roe-ge/0 (16)

where @ = ms+~ and ro. ~e VVti.

In a set of rectangular coordinates, therefore, values of x
and y are plotted such that

[ 1x.clM#-lJ-2<(w+m) (17)

[(
y=W+RN+g4f+Nho- 1‘~”) + “NS (18)

The resulting curve, which represents a trajectory of the motion, is a
logarithmic spiral centered at the origin. In practice, the initial
angle @, which is related to the initial conditions of the problem,
never has to be determined because> as mentioned previously, a
logarithmic spiral may be rotated about the origin to pass through any
point without changing its shape. A relationship given with equation (16)
shows that the non&&sional
coordinate @ is given by

The convergence of the spiral

time elapsing

As=$

is determined

for ~ change in the angular

by the exponential factor
c/LD. (Ac~ally, only one variable is ,involvedbecause, as stated in

conneti’ionwith eq. (9), u). ~1 - [’.)

The coordinate system for the logarithmic spiral, of course,
differs from the velocity-displacement coordinate system ordinarily
used in phase-plane studies. From the rectangular coordinates x snd

y, however, the values of D’V, Ill,snd V may be determined as
fOllows: First, eliminate w between equations (11) and (18). The
result is

Y =D$(l - ‘~’) - CD2V + RN(1 - 2{2) (19)

—— ———— — —
.



10 NACA TN 3034

@mtkms (17) and (19) express x and y in terms of D$ and D**.
If the value of Ill is elhinated between equations (17) md (19),

(20)

Equation (20) allows lines of constant yawing acceleration ~~ to be
drawn in the x,y plsne. These lines are straight lines with a slope

_l- 2P. The line for D*$ = O passes through the origin.
2go

If the value of D2w is eliminated between equations (17) and (19),

Y=Dt+m+& (21)
m

Equation (21) allows lines of constant yatig velocity D~ to be drawn
in the x,y plane. These lines are straight lines with the slope c/u.
The line for

In order
from equation
definition of

D$ = -RN passes through the origin.

to determine the angle of yaw V, substitute D*$+ 2~DV
(I-1)into equation (17). The result is an alternate
x,

X= u.)F(+Nbro- )]*Q + RNs (22)

This equation shows that lines of constant V are parallel to the
y-axis. The grid of lines of constant $ is moving across the X,Y
plane at a constant rate for the case in which the rudder is roving at
a constsnt rate. This result is shown by the term RNs, which represents
a shift in the origin of the grid of V lines by an anmunt proportional
to the nondimensional time s.

Because such a moving grid is inconvenient for graphical work, the
value of V may be obtained nmre easily for the case in which the
rudder is movtig at a constant rate by reading values of DV and #V
from their fixed grids and using equation (11) to determine the value
of v. For the case where the rudder angle is constant, however, the
value of R is zero, and equation (22) reduces to

x=“t+‘ro) (23)

In this case, lines of constant * are fixed lines, parallel to the
y-sxis. The line for V = -N5ro passes through the origin.

_—.—
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The geometrical relationship among the three sets of grid 13nes
for reading 1#~, Dv, and w is shown in figure 1. This relationship
may be derived from equations (20), (21), and (23). The grid lines for

~ constant are rotated from the horizontal by the angle tan-1 $; the

grid lines for D2~ constant are rotated from the vertical by twice

this angle, which equals tan-l 2L . The spacing between grid
1- 2(2

lines for NV = O and D% . 1 is shown to be one unit when measured
along a line of constant lhJ. Similarly, the spacing between the lines
for D~ . 0 and D$ = 1 is one unit when measured along a line of
constsnt D2~. The spacing of the grid lines for reading v is such
that these grid lines would pass through the intersections of a grid
line for Dw constant and the various grid lines for $$. These
geometric relationships may be useful in constructing the grids for
graphical work. The grids drawn in figure 1 are shown centered at the
origin of the x and y coordinates, which is the origin of the spiraI.
In use, however, the line D$ = O often does not pass through the
origin of the spiral because, as shown by equation (21), the line for
w= -RN passes through the origin when the rudder is nmcing at a
constant rate. The spacing and direction of the grid lines, however,
are the ssme as those shown in figure 1. Similarly, the grid for
reading ~ is often moved laterally with respect to the other grids
while its direction is maintained paralled to the y-axis.

Application of theory.- The results just presented are now
summarized briefly and an attempt is made to show their physical
meaning. The analysis considers the nmtion of a linear system of one
degree of freedom under the influence of a linearly increasing force
(corresponding to a constant rate of rudder deflection), a constant
force (corresponding to a fixed rudder deflection), or zero force
(corresponding to motion in the linear range of operation). b each
case, the motion is represented by a logarithmic spiral in a certain
system of coordinates designated the x,y plane. Values of ~, I)$-,
and v may be read from suitable grids of lines superimposed on this
plane.

In the case of a linearly increasing force, the displacement of a
single-degree-of-freedomsystem is lmown to increase linearly with time
after the transient oscillation has damped. The velocity of the system
approaches a constant value, and the acceleration approaches zero.
This behavior agrees with that given by equations (22), (21), and (20),
which show that the grid of lines of angle of yaw move across the x,y
plane at a constant rate, whereas the spiral representing the motion
converges to a certain value of yawing velocity and to a value of yawing
acceleration of zero.
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The simpler cases of a constsnt force or of zero force may be
shown to correspond to equations (22), (21), and (20) in a similar
msnner. fi the case of a constant force, the displacement approaches
a constant value, and the velocity and acceleration both approach zero.
In the case of zero force, all three quantities approach zero. The
origins of the grids for reading D%, D~, and $ for this condition
all coincide with the origin of the spiral. The tilt of the grid lines
for reading values of D$ and &’v results from the fact that, when
a single-degree-of-freedomsystem with damping ~erforms a free oscilla-
tion, the velocity leads the displacement by 90 plus the angle

tan-’ $ and the acceleration leads the velocity by 90° plus the same

angle. These relationships were pointed out by R. K. Mueller in
reference 8. The present analysis shows that this same concept can be
extended to the case of the system under the tifluence of a constant
force or a Mearly increasing force, but that a special coord~ate
system is required to take into account the constant and linesrly
increasing terms in the solution for the transient nmtion as well as
the term representing the dsmped oscillation.

b order to make a graphical solution of the motion of the system
for specified values of the variables, suitable spirals and grids
should be constmcted. One spiral is required for the linear range of
operation, based on the dsmping ratio Cc of the controlled system.
Another spiral is required for the saturated range of operation, based
onthedamptig ratio ~ of theu.ncontrolled system. A suitable set
of grids for each of the spirals should be prepared on separate sheets
of tracing paper. These grids may then be superimposed on the spirals
with the origins located to represent the various conditions of constant
rudder rate, constant rudder deflection, or linear oPeration of We
control. The procedure for obtaining a solution consists in tracing
the trajectory representing the motion of the system, with suitable
shifts in the grids or changes in the spiral at points where the mode
of operation changes from one regime to another. (These potits are
called “switch points” in ref. 6.) The correct procedure ”formaking
these shifts is best described by means of specific examples. Several
such examples are now presented.

the
Five examples

method. These

ExAMmEs

sre presented to illustrate different features of
examples are summarized in the following table:
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Example Contro1 type: Rudder Limitation
angle proportional to -

I Yawing velocity I Rudder rate limited

I II I Yawing velocity I Rudder deflection limited

I III
I

Angle of yaw I Rudder rate limited

Iv Angle of yaw I Rudder deflection li&ted

v I Angle of yaw and I Both rudder rate and
yawing velocity deflection Lbnited

Specific values for the parameters and initial conditions are assumed
for each example. No attempt is made to investigate a range of these
parameters or initial conditions.

Exsmple I.- The following paramters are assumed:

{ =0.05 (0=0.9987)

N = 0.3

R = ~0.125

from which may be derived, from equation (8),

~c =0.2 (UJC=0.9798)

The following initial conditions are assumed:

*O = -0.531

(Iwo = o

5 = -0.25
‘o

from which may be derived, from equation (11),

(&$). = 0.636

Two spirals should be constructed, corresponding to values of damping

.— — —
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ratio of 0.05 snd 0.2. A typical spiral, with the associated grids for
reading D%J and D$, is shown in figure 2. A convenient and suffi-
ciently accurate method of constructing a logarithmic spiral ss a
succession of circular arcs is presented in reference 6 (pt. 1,
appendix I, p. 41).

Ih figure 2, the x- and y-scales are drawn on the same graph as
the spiral. This representation is correct, inasnmch as the x- and
y-scales sre in all cases considered to be centered at the origin of
the spiral. When the spiral is used, however, it must ordinvil.y be
rotated about its origin to pass through the desired initial point.
If the spiral is rotated, the x- and y-scales do not rotate but remain
fixed in direction. i% practice, therefore, the values of x and y
are read with a ruler rather than from scales marked on the same sheet
as the spiral.

The graphical work for example I is shown in figure 3. In this
figure snd succeeding figures in which graphical solutions sre shown,
the scales labeled x and y are drawn, for convenience, with their
origin at the origin of the grid for &$ and D~. These scales should
be considered to show only the direction and spacing but not the true
position of the x- snd y-scales, because the x- and y-scales are in all
cases considered to be centered at the origin of the spiral, which is
shifted in various parts of the solution. These scales therefore move
when the origin of the spiral changes.

86
lh the linear range of operation,

5r ‘D%”
The quantity

Da (called the
aw

“control function” in ref. 6) determines the rudder

position called for by the controlling mechanism. Since initially the

a%
control function ~ . O(1) . 0 whereas

am
~. = -0.25, the rudder is

not in the position called for by the controlling mechanism and will
run at its maximum rate in the direction to reduce the error between
its existing position and the position called for by the controlling
mechanism. These conditions establish that the initial interval of
the motion takes place with the rudder nnving at a constant rate in
the positive direction. The spiral corresponding to ~ = 0.05 should
therefore be used. From formulas (20) and (21), the origin of the
spiral should be located at the intersection of the grid Unes D2~ = ()
and ~ = -RN = -(0.125)(0.3) = -0.0375. The spiral may now be rotated
so that it passes through the initial point (W)o = 0, (D2w)o = o.@6*
The section of the spiral corresponding to the first interval may then
be traced in as shown in figure 3(a). The ends of the intervals, which
correspond to changes in the direction of motion of the rudder or to
changes in the mde of operation, are shown in figure 3 by circled

—
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points which are numbered to correspond to the nuniberof the interval.
The radial line from the origin of the spiral passing through the
initial point corresponds to s . 0. Values of NV and D$ may be
read from the grids at successive values of the radial angle 19 measured
from this radial line. For each value of 0, the corresponding value

of nondimensional time is determined from the formula s = ~. If
m

desired, the values of $ maybe determined at the ssme points by
substituting the values of D2$, D-$r,and s into equation (11).

As the motion continues, the error between the rudder angle
existing and that called for by the control is eventually reduced to
zero. At this point the interval ends. This condition exists when

Make the substitution s . ~ and solve for

~+g

‘$= Z@~llJ

The curve showing IhJ as a function of L9

IhJ. Then,

satisfying this relation
is shown in figure 3 as a short dashed line. The intersection of this
curve and the spiral determines the time at which the rudder reaches
the angle called for by the control. Substitution of a few values of
L9 into this equation will quickly show the values of 19 that will
give values of W close to those required to intersect the spiral.
As a result, orOy two or three points of the curve in the vicinity of
the intersection need to be plotted.

An alternate method for determining the time at which the rudder
reaches the angle called for by the control is to carry along an
auxiliary plot of the rudder angle br and the control function

Wr

‘%
as functions of s. The intersection of these curves then

determines the desired time. This type of plot is also valuable in
giving a physical picture of the action of the control.

When the rudder reaches the angle called for by the control, a
check must be made to find whether the system will thereafter operate
linearly or whether the msximum rate called for will again exceed that
available. The rate of rudder motion called for by the control is
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Because the maximum rate available is R, this condition can be
satisfied only when

(D%A pair of grid lines determined by this relation = f+
)

is shown in figure 3. The area between these lines is designated as
the “linear band.” Whenever the rudder reaches the angle called for
by the centro1 at a point within the area bounded by these two lines,
the control operates llnesrly, and the graphical analysis must be
continued with the spiral for ~c . 0.2. Whenever the trajectory
passes outside the area bounded by these two lines, however, the
rudder is moving at its maximum rate and the snalysis must be made by
using the spiral for K = 0.05. Note that the trajectory may psss
through the linear band without the control operating linearly. Only
when the rudder reaches the angle called for by the control within the
linear band does the control operate Mnearly.

The trajectory for the first interval of the motion is seen from
figure 3(a) to end outside the band of Enesr operation. The rudder
therefore reverses and moves at its maximum rate in the negative
direction for the next interval. The spiral is therefore shifted so
that its origin is located at the intersection of the grid lines
1%=0 =d D$ =-RN =-(-O. E5)(0.3) =0.0375. ‘lhespira listhen
rotated to pass through the final point of the first interval, which
becomes the initial point of the second interval. Values of e and s
for this interva~ starting from zero at the start of the interval,
must be determined. These values of 19 and s sre used in determining
the values of $ for this interval and the end point of the interval.
Finally, the values of s in the second interval are added to those
in the first interval to determine the over-all time elapsed. The
end of the second interval is determined in the same way as the end of
the first interval.

The snalysis is continued in this manner for several intervals,
the origin of the spiral being shifted each time the rudder motion
reverses. As shown in figure 3(a), the end point of the fifth interval
occurs within the bsnd of linear operation. At this point, the work
must be continued on the spiral for cc = O.2. In transferring the
work to the spiral for the linesr mode of operation, allowance must,
in general, be made for the fact that this spiral is based on
equation (7), which is expressed in terms of the time unit Sc (eq. (6)).
For this reason, the derivatives D2V and DV and the limits of the
linear band must be converted to the new time unit whenever the work is
continued on the spiral for the linear range. The required relations
are

—
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DC2V =
D%

abr
1 + ‘a*

Time as measured on this spiral must be converted back to units of s
when plotting the results. In the present example, s = Sc, Dc2~ = D2V,
and DCV = D* because a~~~ iS zero. The transformation therefore
has no effect in this case.

The spiral for {c = O.2 is located on its own grids so that
its origin is at I#lJ= O, D$ = O. Values of ~$ and D$ from the
last petit are replotted on these grids and the spiral is rotated to
pass through this point, as shown in figure 3(b). The work then
proceeds as before.

In the example
side of the band of
shifted back to the
This interval again

chosen, the motion alnmst immediately passes out-
linear operation again. The snalysis is therefore
spiral for ~ = 0.05 for the seventh interval.
ends in the linear range, and thereafter the nmtion

remains linear and damps out exponentially.

ab
Time histories of the yaw angle $, the control function ~ ,

d
and the rudder angle br, obtained from the preceding analysis, are
plotted in figure 4.

Ebanple II.- The following parameters sre assumsd:

abr
~=1

( = 0.05 (m = 0.9987)

N = 0.3

b . *o.~5
rmax

from which may be derived, from equation (8),

{= = 0.2 (~ = 0.9798)

..— .—.
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The following initial conditions are assumed:

$0 = -0.575

(w)() = o

Since the rudder is constrained to mve in proportion to the yawing
velocity as long as it is not against a stop,

%0 = o

ltromequation (11) the following equation may be derived:

(fi)() = 0.575

The graphical work for this problem is shown in figure 5. This example
illustrates a procedure not found in example I in that the angle of yaw
may be read from suitable sets of vertical grid lines whenever the
rudder is against a stop. These grid lines cannot be used when the
rudder is moving at a constant rate. Initially, the control is
operating in its Iinesr range; therefore, the spiral for cc =0.2 is
used for the first interval (fig. 5(a)), with its origin located at
D2~=0, ~=o. The rudder always reaches its stop at a given value

of yating velocity, becau~e ~.

rudder reaches its stops are

D~=**

abrwB“
The values of w where the

. + o.125 . fo.~5
1

These lines are shown as limits of the linear band in figure 5. When
the trajectory passes outside one of these lines, the work nust be
continued on the spiral corresponding to L = 0.05. This spiral is
centered on the grid lines D%J = O, D$ = O, as shown by equations (20)
and (21). Values of s may be determined at each point on the trajec-
tory as described for example I. If desired, values of $ may be
obtained from the values of D2V and IXJ,as described for example 1,
or they may be read directly from suitable sets of vertical grid lines
constructed in accordance with equation (23). This equation shows that
the line for ~ = -N&.. passes through the origin of the spiral. When

the trajectory is above the line IY$= 0.125, therefore, the grid line
*= -(0.3)(0.125) = -0.0375 passes through the origin. When the
trajectory is below the line D~ = -0.125, the grid line v = 0.0375
passes through the origin. When the system is operating in the linear

.

—.



,

.,

NACA TN 3034

rsnge, of course, the grid line W = O passes through the
The grid lines corresponding to these conditions are shown
lines in figure ‘j.

19

origin.
by dotted

mr
Time histories of the yaw angle ~, the control function w —

~D~’
snd the rudder angle br obtained for this problem are plotted in
figure 6.

Example III.- The following parameters are assumed:

~br
~=2

~ = 0.05 (u = 0.9987)

N = 0.3

R = *0.125

from which may be derived, from equation

cc =0.0395 (~=

(8),

0.9992)

The following initial conditions are assumed:

Wo = -0.5

(DIJ)o= o

%. = -0.25

from which maybe derived, from equation (11),

(D%)o = 0.575

The graphical work for this problem is shown in figure 7, curve 1.
The procedure required is very similar to that of example I, although
different equations are required to determine the end points of the
intervals and the limits of the linear band.

The end of an interval is reached when

br = bro +-

From equation (22), the value of

abr

“%-
* maybe obtained as follows:

(24)

.———. ._-.————-
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(25)

Substitute equation (25) into equation (24), replace s by 19/0,and
solve for x. The result is

(26)

Numerical values may be substituted into equation (26) to obtain x as
a function of 19. A curve of x as a function of 19 satisfying this
relation may be plotted on the graph, as shown in figure 7 by a dashed
line. The intersection of this curve and the spiral determines the
time at which the rudder reaches the sngle called for by the contro1.
When the values of x and 19 are plotted, it must be remmibered that
the x- snd y-axes are considered to pass through the origin of the
spiral, not the origin of the &$, Dlr grid as shown in the figures.
l?urthernmre,values of 6’ are measured about the origin of the spiral.

The complete solution may now be csrried out as it was in the
previous examples. This solution, sham in figure 7, curve 1, indicates
that the nntion approaches a steady hunting oscillation at an amplitude
slightly smaller than the initial amplitude. Time histories of the

control function ‘J
2

and the rudder angle br, obtained from the

preceding analysis, are plotted in figure 8(a).

In order to show the behavior of the system when the motion is
started with smaller initial amplitudes, curves 2, 3, and 4 of figure 7
were plotted. The resultant time histories are shown in figures 8(b)
to 8(d). These results indicate that, if the motion exceeds the ldnear
range only slightly, as in curve 3, the oscillation continues to build
up until the steady hunting condition of curve 1 is approached. On the
other hand, if the oscillation starts at a slightly smaller amplitude,
as in curve 4, it remains stable and danps out. Note that in the “
solution for the linear range of operation (fig. 7(b)) a transformation
of the time scale

lkmple IV.-

is required.

The following psrameters are assumed:

a5r
~.2

~ = 0.05 (UI= 0.9987)

N = 0.3

b = *O.250
rmsx
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a

.

from which may be derived, from equation /8),

Cc =0.0395 (q =0.9992)

The following initial conditions =,e assumed:

~. = -0.575

(moo =0

The control attempts to move the rudder in accordance with the relation
asr

‘r=%”
Initially, the control calls for a value of br equal to

(-0.575)(2) = -1.15, which is greater than the maximum rudder deflection.
The initial rudder angle is therefore the maximum value.

%. = -0.25

From equation (11) the following equationmay be derived:

(D2$)0 = 0.650

The graphical work for this problem is shown in figure 9. Time histories
abof the control function ~
$

and the rudder angle ~ are plotted in

figure 10.

Example V.- The following parameters are assumed:

abr
~.2

abr
~q.l

L = 0.05 (O = 0.9987)

N = 0.3

R = *0.2

Erm . io.25

from which may be derived, from equation (8), .

cc = 0.158 (UC = 0.9874)

. . ...—.— .—.——— .— —
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The following initial conditions are assumed:

(Dv)O =0

‘ro = -0.25

from which may be derived, from equation (11),

(D2V)0 = 0.4

In this problem, the graphical work for which is shown in figure 11,
curve 1, somewhat more complicated relations exist for determining

ab a5r
the limits of linear operation. The quantity W— —

r + ‘V bD$ ‘etertinesat
the rudder position called for by the controlling mechanism. Initially,
this quantity equals -0.650, whereas the rudder is against its negative
stop at -0.25. The rudder therefore stays at its negative stop for the
first interval. The rudder leaves its stop when the control function

This relation determines a straight line on the ~ and D$ grids
which may be drawn in as shown in figure 11. A similsr line is drawn
to show when the rudder leaves its positive stop.

After the rudder leaves its stop, a check nmst be made to determine
whether the rudder will operate in the linear rsnge. The rate of rudder
motion called

A second pair

for by the control is

of lines determined by this relation,
fO.2 = D~2) + &til), is shown in >igure 11. The”srea bounded by the
two ptirs of lines is designated as the “linear region” in the figure.
Since the first interval ends outside the area bounded by these lines,
the rudder moves at its maximum rate in the positive direction for the
second interval. The solution proceeds as in case I or III.

The second interval ends when the rudder reaches its maximum
deflection or when it reaches the angle called for by the control,
whichever occurs first. The time that the rudder must travel to reach
its positive stop after the start of an interval is determined from the
relation

.

—
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5ro+Rs=5
‘msx

from which

The value of 6’ at which this condition is satisfied, in the present
instsmce, is

e = (0.g987)-(-o”25) + 0.25
0.2

The conditions under which the rudder
the control are given by the formula

= 2.49 radians = 143°

reaches the angle called for by

b’)-=+-32!.)
In this formula, ,0 is the angle between the positive x-tis and
the initial point of the interval, measured clockwise. This equation
is an extension of equation (26) to the present problem and is derived
in a similar manner. A few points of a curve of x as a function of
0 satisfying this relation maybe plotted on the graph. The inter-
section of this curve and the spiral determines the time at which the
rudder reaches the angle called for by the control. Alternatively,
a plot of the rudder angle and the control function as functions of s
may be made to determine this point.

In the present instance, the rudder reaches its positive stop
before it reaches the angle called for by the control. In the third
interval, therefore, the rudder is against its positive stop. The
solution proceeds as it did for the first interval.

Continuation of the solution, shown in figure 11, curve 1, results
in a closed cycle. The system therefore performs a steady hunting
oscillation for the initial conditions chosen. Time histories of the

a% DT~, and the rudderyaw angle ~, the control function $W +

angle ~ obtained from the preceding analysis are plotted in
figure 12(a).

.—.— —— .— —— .—
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In order to show the behavior of the system when the motion is
started with a smaller initial amplitude, curve 2 of figure 11 was
plotted. This solution differs from that of curve 1 in that at the
end of the first interval the rudder reaches the angle called for by
the control before it reaches its positive stop. The detsils of the
graphical work sre somewhat similar to those required for example I.
Time histories of the motion are shown in figure 12(b).

DISCUSSION OF RESUITS

Although the preceding discussion is intended primarily to
describe a graphical method for determining the motion of an auto-
matically controlled system when saturation effects are present, a
few results of interest maybe obtained from the examples presented.

Variation of stability with amplitude.- First, some general
statements may be made regarding the variation of the stability of a
system of the type considered as a function of amplitude. At
ampkltudes within the linear range of operation of the control, the
period and damping maybe predicted by well-known methods. For
practical controls, of course, the damping should usually be considerably
greater than that of the uncontrolled system. At very large amplitudes,
far beyond those where the linear range is first exceeded, the period
and damping of the system approach those of the uncontrolled system.
This tendency results from the fact that the nments supplied by the
control, when either its deflection or rate is limited, are very small
compared with the inherent restoring and dsmping moments acting on the
system at sufficiently large amplitudes. At intermediate ampUtudes,
the behavior of the system depends on how the saturation effects
influence the phase relationship between the nmtion of the system and
that of the control. If only the control deflection is limited, as in
exsmple II or IV, the phase relationship tends to be unaffected, and a
smoth transition occurs between the characteristics of the controlled
system and that of the uncontrolled system as the amplitude is increased.
If only the control rate is limited, however, as in exsmple I or 111,
a phase lag approaching 90° in the nmtion of the control is introduced
and, as a result, the dsmping at intermediate amplitudes is decreased.
Whether actual instability occurs in some amplitude rsnge depends
primarily on the smount of damping present in the uncontrolled system
and in the controlled system in its linear range of operation. In
example III presented previously (fig. 8), instability occurred at an
amplitude slightly beyond the linear range and continued up to several
times this amplitude. With both rate and deflection limited, a phase
lag intermediate between those produced by the rate and deflection
limitations maybe present. If the deflection range is sufficiently
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large, however, the rate limitation may prevent the control from ever
reaching its stops; therefore the deflection limitation becomes
unimportant.

Emmples I and II, presented previously, in which the control
produced primarily an increase in damping, show that the control
remained effective in producing damping even at amplitudes several
times that at which the saturation effects were first encountered
(figs. 4and 6). This result may be of importance in the design of
yaw dampers for airplanes because it indicates that, if some decrease
in damping at the lsrger amplitudes can be tolerated, the power output
of the controlltig device may be made considerably less than that
required to provide linear operation throughout the range of amplitudes
encountered. As was previously mentioned, flight tests have shown that
increased damping of the lateral oscillations of airplanes is required
mainly at small amplitudes.

Extension of the examples to other conditions.- Some reduction in
the number of parameters in the problem has already been made by express-
hg time in terms of the nondimensional parameter S. The results of
any given problem may therefore be applied to systems with any natural

, frequency by converting back from the nondimensional to the real time
unit. A further reduction in the number of parameters is possible by
dividing through the equations for the variations of W and D~
(eqs. (9) and (10)) by the quantity RN. The problem is then completely

specified in terms of the quantities ~, ~r/Rj $/RN, D~/RN, N ~,
abr

and N =V. ‘A given solution may therefore be applied to systems with

other values of R and N provided the initial conditions are chsnged
so that the quantities &o/RY $0/RN, and DVo/RN remain the same d

Yprovided the gearing constants are chsnged so that the quantities NA
abr a~

and NWV remain the same. Values of ~/R, $/RN, and @/RN

obtained from the given solution apply to the new system. The values
of ~rj $, and D~ may then be obtained by multiplying these parameters
by the appropriate factors.

Application to actual automatic controls.- Although actual auto-
matic controls do not follow the controlling quantities with zero lag
as assumed in the foregoing analysis, a method is suggested whereby –
the ssme type of analysis may be applied to give approximate solutions
for saturation effects on actual automatic controls. For this purpose,
the gearing constants abr-a$ and abr@D~ should be selected to give
the ssme amplitude ratio and phase angle between the control motion and
the motion of the system as exists on the actual automtic control at
the frequency at which the controlled system oscillates in its Mnesr
range. Usually this frequency may be approximately determined from
elemmtsry considerations. The applicability of this method depends
on the condition that the saturation effects do not change the frequency

————— .————— ——-. — ..—. –.



26 NACA m 3034

very inch. This condition may be expected to exist when the restoring
moment on the uncontrolled system is fairly large compared with the
restoring moment su~lied by the control. The accuracy of the results
obtained by this method probably depends to some extent on the actual
details of the mechanism under consideration. This method is limited
in applicability to cases in which the controlled menibercan be
appmxhated as a stigle-de~ee-of-fkeedom system. No limitation is
placed on the complexity of the controlling mechanism itself, inasnmch
as experimentally determined frequency-response data could be used to
select the gesring constants.

CONCLUSIONS

A graphical method is presented for determining the motion of a
freely oscillattig system of one degree of freedom stabilized by a
controlling device which applies control force in proportion to the
displacement of the system, to its rate of ch~ge of disp~cement~
or tith. The controlling member is assumed to have limitations on
its maximum deflection, on its mximum rate of movement, or both.
Although the report is intended primrily to describe this,graphical
method, the following conclusions may be obtained from the exsmples
presented:

1. At sufficiently small amplitudes the period snd damping of
the system correspond to those provided by Mnear operation of the
control whereas, at very large amplitudes, the period ad d~ing
approach those of the uncontrolled system: At intermediate amplitudes,
if the deflection of the control is limited, a smooth transition
between these two conditions of period and damping takes place whereas,
if the rate of control movement is limited, the damping maybe reduced
below that of the uncontrolled system. In some cases, limiting the
rate of control movement may produce instability over a range of
amplitudes.

2. If the control produces primarily an increase in damping,
the control remains effective in producing damping even at amplitudes
several times that at which saturation effects are first encountered.
This effect may be useful in reducihg the power requirements of yaw
dampers for airplanes.

Langley Aeronautical Laboratory,
National Advisory Conmittee for Aeronautics,

Langley Field, Vs., August 18, 1953.
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